34 research outputs found

    Investigating impacts of environmental factors on the cycling behavior of bicycle-sharing users

    Get PDF
    As it is widely accepted, cycling tends to produce health benefits and reduce air pollution. Policymakers encourage people to use bikes by improving cycling facilities as well as developing bicycle-sharing systems (BSS). It is increasingly interesting to investigate how environmental factors influence the cycling behavior of users of bicycle-sharing systems, as users of bicycle-sharing systems tend to be different from regular cyclists. Although earlier studies have examined effects of safety and convenience on the cycling behavior of regular riders, they rarely explored effects of safety and convenience on the cycling behavior of BSS riders. Therefore, in this study, we aimed to investigate how road safety, convenience, and public safety affect the cycling behavior of BSS riders by controlling for other environmental factors. Specifically, in this study, we investigated the impacts of environmental characteristics, including population density, employment density, land use mix, accessibility to point-of-interests (schools, shops, parks and gyms), road infrastructure, public transit accessibility, road safety, convenience, and public safety on the usage of BSS. Additionally, for a more accurate measure of public transit accessibility, road safety, convenience, and public safety, we used spatiotemporally varying measurements instead of spatially varying measurements, which have been widely used in earlier studies. We conducted an empirical investigation in Chicago with cycling data from a BSS called Divvy. In this study, we particularly attempted to answer the following questions: (1) how traffic accidents and congestion influence the usage of BSS; (2) how violent crime influences the usage of BSS; and (3) how public transit accessibility influences the usage of BSS. Moreover, we tried to offer implications for policies aiming to increase the usage of BSS or for the site selection of new docking stations. Empirical results demonstrate that density of bicycle lanes, public transit accessibility, and public safety influence the usage of BSS, which provides answers for our research questions. Empirical results also suggest policy implications that improving bicycle facilities and reducing the rate of violent crime rates tend to increase the usage of BSS. Moreover, some environmental factors could be considered in selecting a site for a new docking station

    EventDrop: data augmentation for event-based learning

    Get PDF
    The advantages of event-sensing over conventional sensors (e.g., higher dynamic range, lower time latency, and lower power consumption) have spurred research into machine learning for event data. Unsurprisingly, deep learning has emerged as a competitive methodology for learning with event sensors; in typical setups, discrete and asynchronous events are first converted into frame-like tensors on which standard deep networks can be applied. However, over-fitting remains a challenge, particularly since event datasets remain small relative to conventional datasets (e.g., ImageNet). In this paper, we introduce EventDrop, a new method for augmenting asynchronous event data to improve the generalization of deep models. By dropping events selected with various strategies, we are able to increase the diversity of training data (e.g., to simulate various levels of occlusion). From a practical perspective, EventDrop is simple to implement and computationally low-cost. Experiments on two event datasets (N-Caltech101 and N-Cars) demonstrate that EventDrop can significantly improve the generalization performance across a variety of deep networks.Comment: IJCAI 202

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction

    Location Reference Recognition from Texts: A Survey and Comparison

    Full text link
    A vast amount of location information exists in unstructured texts, such as social media posts, news stories, scientific articles, web pages, travel blogs, and historical archives. Geoparsing refers to recognizing location references from texts and identifying their geospatial representations. While geoparsing can benefit many domains, a summary of its specific applications is still missing. Further, there is a lack of a comprehensive review and comparison of existing approaches for location reference recognition, which is the first and core step of geoparsing. To fill these research gaps, this review first summarizes seven typical application domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traffic management, spatial humanities, tourism management, and crime management. We then review existing approaches for location reference recognition by categorizing these approaches into four groups based on their underlying functional principle: rule-based, gazetteer matching–based, statistical learning-–based, and hybrid approaches. Next, we thoroughly evaluate the correctness and computational efficiency of the 27 most widely used approaches for location reference recognition based on 26 public datasets with different types of texts (e.g., social media posts and news stories) containing 39,736 location references worldwide. Results from this thorough evaluation can help inform future methodological developments and can help guide the selection of proper approaches based on application needs

    How can voting mechanisms improve the robustness and generalizability of toponym disambiguation?

    Get PDF
    A vast amount of geographic information exists in natural language texts, such as tweets and news. Extracting geographic information from texts is called Geoparsing, which includes two subtasks: toponym recognition and toponym disambiguation, i.e., to identify the geospatial representations of toponyms. This paper focuses on toponym disambiguation, which is usually approached by toponym resolution and entity linking. Recently, many novel approaches have been proposed, especially deep learning-based approaches, such as CamCoder, GENRE, and BLINK. In this paper, a spatial clustering-based voting approach that combines several individual approaches is proposed to improve SOTA performance in terms of robustness and generalizability. Experiments are conducted to compare a voting ensemble with 20 latest and commonly-used approaches based on 12 public datasets, including several highly ambiguous and challenging datasets (e.g., WikToR and CLDW). The datasets are of six types: tweets, historical documents, news, web pages, scientific articles, and Wikipedia articles, containing in total 98,300 places across the world. The results show that the voting ensemble performs the best on all the datasets, achieving an average Accuracy@161km of 0.86, proving the generalizability and robustness of the voting approach. Also, the voting ensemble drastically improves the performance of resolving fine-grained places, i.e., POIs, natural features, and traffic ways.Comment: 32 pages, 15 figure

    How can voting mechanisms improve the robustness of individual toponym resolution approaches?

    Get PDF
    This paper investigates the feasibility of implementing a general and robust toponym resolution approach by ensembling multiple existing approaches through voting mechanisms. Experiments were conducted to compare two voting ensembles with nine individual approaches based on seven public datasets. The results show that the voting ensembles can achieve consistent measures of Accuracy@161km and mean error, outperforming the individual approaches

    Improvement Schemes for Indoor Mobile Location Estimation: A Survey

    Get PDF
    Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation, including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus on the location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research

    How can voting mechanisms improve the robustness and generalizability of toponym disambiguation?

    Get PDF
    A vast amount of geospatial information exists in natural language texts, such as tweets and news. Extracting geospatial information from texts is called Geoparsing, which includes two subtasks: toponym recognition and toponym disambiguation, i.e., to identify the geospatial representations of toponyms. This paper focuses on toponym disambiguation, which is approached by toponym resolution and entity linking. Recently, many novel approaches have been proposed, especially deep learning-based, such as CamCoder, GENRE, and BLINK. In this paper, a spatial clustering-based voting approach combining several individual approaches is proposed to improve SOTA performance regarding robustness and generalizability. Experiments are conducted to compare a voting ensemble with 20 latest and commonly-used approaches based on 12 public datasets, including several highly challenging datasets (e.g., WikToR). They are in six types: tweets, historical documents, news, web pages, scientific articles, and Wikipedia articles, containing 98,300 places across the world. Experimental results show that the voting ensemble performs the best on all the datasets, achieving an average Accuracy@161km of 0.86, proving its generalizability and robustness. Besides, it drastically improves the performance of resolving fine-grained places, i.e., POIs, natural features, and traffic ways

    How can voting mechanisms improve the robustness and generalizability of toponym disambiguation

    Get PDF
    Natural language texts, such as tweets and news, contain a vast amount of geospatial information, which can be extracted by first recognizing toponyms in texts (toponym recognition) and then identifying their geospatial representations (toponym disambiguation). This paper focuses on toponym disambiguation, which can be approached by toponym resolution and entity linking. Recently, many novel approaches, especially deep learning-based, have been proposed, such as CamCoder, GENRE, and BLINK. However, these approaches were not compared on the same and large datasets. Moreover, there is still a need and space to improve their robustness and generalizability further. To mitigate the two research gaps, in this paper, we propose a spatial clustering-based voting approach combining several individual approaches and compare a voting ensemble with 20 latest and commonly-used approaches based on 12 public datasets, including several highly challenging datasets (e.g., WikToR). They are in six types: tweets, historical documents, news, web pages, scientific articles, and Wikipedia articles, containing 98,300 toponyms. Experimental results show that the voting ensemble performs the best on all the datasets, achieving an average Accuracy@161km of 0.86, proving its generalizability and robustness. It also drastically improves the performance of resolving fine-grained places, i.e., POIs, natural features, and traffic ways. The detailed evaluation results can inform future methodological developments and guide the selection of proper approaches based on application needs

    Location reference recognition from texts: A survey and comparison

    Get PDF
    A vast amount of location information exists in unstructured texts, such as social media posts, news stories, scientific articles, web pages, travel blogs, and historical archives. Geoparsing refers to the process of recognizing location references from texts and identifying their geospatial representations. While geoparsing can benefit many domains, a summary of the specific applications is still missing. Further, there lacks a comprehensive review and comparison of existing approaches for location reference recognition, which is the first and a core step of geoparsing. To fill these research gaps, this review first summarizes seven typical application domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traffic management, spatial humanities, tourism management, and crime management. We then review existing approaches for location reference recognition by categorizing these approaches into four groups based on their underlying functional principle: rule-based, gazetteer matching-based, statistical learning-based, and hybrid approaches. Next, we thoroughly evaluate the correctness and computational efficiency of the 27 most widely used approaches for location reference recognition based on 26 public datasets with different types of texts (e.g., social media posts and news stories) containing 39,736 location references across the world. Results from this thorough evaluation can help inform future methodological developments for location reference recognition, and can help guide the selection of proper approaches based on application needs
    corecore